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Abstract
A simple model based on dislocation theory allows the construction of a fully
defined system of differential equations and the calculation of curves that
correspond to different mechanical tests such as stress relaxation, the creep
test and the imposed strain rate test. Various multiplication and exhaustion
rates of mobile dislocations have been considered. The numerical solution of
the system reproduces satisfactorily experimental curves obtained in Ge single
crystals at 750 K.

1. Introduction

In the 1960s Alexander and Haasen [1] published a model describing quantitatively the plastic
behaviour of covalent crystals with the diamond lattice (the A&H model). As had already been
recognized by these authors, one of the key issues of the problem is to predict the evolution
with strain and stress of the mobile dislocation density ρm . The model that they proposed
contains in particular a relation for dislocation multiplication, which can be expressed in terms
of the time derivative of the density

ρ̇multi = Kmulti1 γ̇pτe f f , (1)

where γ̇p is the plastic strain rate, τe f f is the effective stress and K is a constant. This relation
is derived from the results of etch pit experiments. Contrary to the usual law for dislocation
multiplication which is assumed in metals, and for which the multiplication rate is simply
proportional to the area swept by dislocations

ρ̇multi = Kmulti2 γ̇p, (2)

relation (1) contains the effective stress. Nevertheless, τef f is implicitly taken into account
in (2), where it influences the plastic strain rate through the dislocation velocity. Therefore, its
meaning in relation (1), where it is explicitly added, is not clear from the theoretical point of
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view. However, the A&H model has been very successful in reproducing the characteristics of
the yield point at the onset of the deformation curve, including its temperature and strain-rate
dependence. This has been considered as a proof for the validity of relation (1). It has been
discovered only recently that the successful predictions of the A&H model concerning the
lower yield point (LYP) do not in fact depend on the actual multiplication law [2]. This finding
reopens the question of which is the appropriate multiplication law in semiconductors.

In the same study, Moulin et al [2] performed three-dimensional mesoscopic simulations
of dislocation dynamics in silicon. In this way they reproduced numerically the yielding in
the stress–strain curve and they proposed a different dislocation multiplication law that fits the
results of the simulation as well as the previous experimental results

ρ̇multi = Kmulti3 γ̇p

√
τe f f /ρm . (3)

The aim of this paper is to present a calculation procedure that allows us to test the
proposed relations (1)–(3). The calculated curves are compared with experimental results
concerning the plasticity of Ge single crystals that have been obtained in our laboratory in
terms of stress–strain curves and transient tests (stress relaxation and creep tests) [3].

2. Constitutive equations

The main idea of the presented calculation is to relate microscopic features, such as the
behaviour of the whole dislocation population (density, velocity and their dependence on
strain and stress), to the macroscopic variable that can be experimentally measured (applied
stress and macroscopic strain). We may also take advantage of the calculation to determine
parameters which are very difficult to measure experimentally, such as the ratio of mobile
to total dislocation densities or the internal stress. From a macroscopic point of view, the
straining experiment is depicted by the so-called machine equation, which may take a different
formulation depending on the kind of test involved. This equation is described later.

The Orowan law relates plastic strain rate γ̇p to mobile dislocation density ρm and velocity
v (b = 4.0 × 10−10 m is the Burgers vector)

γ̇p = bvρm . (4)

Whereas a number of observations report values for the dislocation density, it is impossible
to determine experimentally which part of this population is mobile, i.e. participates in the
plastic deformation at a given time. Therefore we have to distinguish between mobile and
total dislocation densities as detailed later. Under some conditions the dislocation velocity can
be measured, and those values will be used as an input in the calculation. This allows us to
reduce the number of fitted parameters.

2.1. Dislocation velocity

The velocity of screw dislocations has been measured using double etch pit experiments at
different temperatures and for stresses ranging from 10 to 50 MPa [3]. The obtained velocities
depend on stress according to the power law

v = v0(τe f f /µ)m . (5)

Such a law is no doubt a very simplified description of reality. It assumes implicitly
the homogeneous deformation of the specimen, which is likely not to be the case for
semiconductors [3]. Further, the screws are less mobile than the 60◦ dislocations, so the
parameters of law (5), measured for screws, underestimate the ‘average’ dislocation velocity.
For covalent compounds, the velocity of dislocations shorter than roughly 5 µm (see [4])
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depends on their length and is less than the velocity in the length-independent regime, depicted
by the power law (5). At low stresses, dislocations may be slowed down by interaction with
impurities. Coefficient m, regarded as a constant, is in fact slightly stress dependent [5].
However, the latter two effects were not observed in etch pit experiments. Furthermore, the
calculations are limited to a fixed temperature T = 750 K for which the parameters of the
power law (5) were measured as v0 = 16 ± 5 m s−1 and m = 2.1 ± 0.2.

The effective stress τef f is the difference between the applied stress τ and the internal
stress τi , given by the Taylor formula

τe f f = τ − τi = τ − αµb
√

ρt , (6)

where µ = 56 GPa is the shear modulus and α is a dimensionless parameter characterizing the
dislocation interaction. α could be fitted in the model; nevertheless it is more advantageous to
limit the number of free parameters as much as possible, therefore α = 1/π is introduced, as
measured by Berner and Alexander [6]. ρt is the density of dislocations which are responsible
for work-hardening. It is assumed that ρt equals the total dislocation density.

2.2. Dislocation density

A distinction has been made between the density of mobile dislocations ρm and the total
dislocation density ρt which also includes the dislocations locked in the crystal. During
plastic straining, both populations may evolve. In order to model this evolution, the following
processes have been included in the calculations:

(i) the multiplication of mobile dislocations ρ̇multi

(ii) the escape of dislocations at the free surfaces ρ̇sur f and
(iii) the locking of mobile dislocations within the crystal ρ̇ex .

Note that the decrease in dislocation density through mutual annihilation of dislocations within
the crystal has been neglected. This mechanism is supposed to be important at high strain levels,
but we limit our calculation to moderate plastic strains (25% resolved).

The multiplication of dislocations increases the number of both mobile and total
dislocations. Three formulations (1)–(3) have already been introduced for the multiplication.
The loss of mobile dislocations at the free specimen surface is

ρ̇sur f = − 2

b�
γ̇p, (7)

where � is the dimension of the crystal in the slip direction.
The locking of mobile dislocations corresponds to the exhaustion of mobile dislocations.

It decreases the density of mobile dislocations and does not affect the total dislocation density.
An example of such a process is dipole formation which was frequently detected in TEM
observations [3]. Three laws (8)–(10) for the exhaustion of mobile dislocations were tested

ρ̇ex = Kex1γ̇p, (8)

ρ̇ex = Kex2γ̇pρt , (9)

ρ̇ex = Kex3γ̇p
√

ρt . (10)

The evolution of the density of both sets of dislocations may be written as

ρ̇m = ρ̇multi − ρ̇ex − ρ̇sur f , (11)

for the density of mobile dislocations and

ρ̇t = ρ̇multi − ρ̇sur f , (12)

for the total dislocation density.
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2.3. Relation to experiments

During any deformation experiment, the applied strain rate γ̇a is related to the specimen plastic
strain γ̇p and to the applied stress rate τ̇ through the so-called ‘machine equation’

τ̇ = M(γ̇a − γ̇p), (13)

where M is the elastic modulus of the straining apparatus and specimen assembly. The total
strain rate γ̇ can be decomposed into plastic and elastic parts

γ̇ = γ̇p +
τ̇

E
, (14)

where E is the slope of the elastic part of the stress–strain curve and τ and γ are the measured
resolved stress and resolved strain.

When the Orowan law (4) and the definition of the effective stress (6) are introduced in
equations (13) and (14), the experimental values (τ ,γ ) are directly related to the evolution of the
dislocation densities (ρm , ρt ). The fully determined system of four differential equations (11)–
(14) for four variables (τ , γ , ρm , ρt ) is now defined. Relations (11) and (12) contain one
multiplication law (1)–(3) together with one exhaustion law (8)–(10); thus there exist nine
different systems to solve.

To calculate the stress–strain curve, the applied strain rate is fixed to the experimental
value. For the creep transient, the system is reduced to three equations and three variables
since τ is constant and equations (13) and (14) can be written γ̇ = γ̇p(=γ̇a). For the stress
relaxation experiment, the crosshead is stopped (γ̇a = 0) and equations (13) and (14) are
reduced to τ̇ = −M γ̇p.

2.4. Fitting procedure

The systems of differential equations (11)–(14) are integrated numerically. All the parameters
are either known from the previous experiments or fixed by the experimental conditions, except
for the parameters Kmulti I and Kex J where I and J refer to the particular multiplication
and exhaustion laws used. For stress relaxation, creep and imposed strain rate tests, the
experimental curves were independently calculated and the coefficients Kmulti I and Kex J

fitted in order to minimize the quadratic difference � between experimental and calculated
curves by the Nelder–Mead simplex method. The function � was chosen in the form

� = 1

(τmax − τmin)2

N∑

i=1

�τ 2
i +

1

(γmax − γmin)2

N∑

i=1

�γ 2
i , (15)

in order to give the relative deviations in τ and γ the same weight; �τi and �γi are differences
between measured and calculated stress and strains, N is the total number of data and τmax,
τmin, γmax and γmin are extremal values in the data set.

The initial conditions were obtained differently for the transient experiments and the
stress–strain curve. In the case of transient experiments, the initial stress and strain level are
fixed by the experimental conditions. The initial values of ρm and ρt were adjusted in such
a way that γ̇p at the onset of the transient is correctly fitted. For the stress–strain curve, the
integration starts at the upper yield point (UYP) where τ̇ = 0 and γ̇p is therefore given by
the machine-imposed strain rate. Initial ρm and ρt values were calculated from (4) assuming
that at this point all dislocations are mobile. Next, the fit of coefficients Kmulti I and Kex J is
performed on the part of the stress–strain curve after the UYP. The deduced values are then
used to reproduce the beginning of the curve (before the UYP).
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Figure 1. Comparison between experimental (dots) and calculated (thin curve) results for a stress
relaxation experiment performed after the LYP.

Figure 2. Evolution of the mobile dislocation density during the stress relaxation in figure 1
according to calculations performed using the exhaustion law (10) and the three multiplication
laws.

3. Mechanical tests

Single-crystalline paralellepipedic specimens of dimensions 4 × 4 × 9 mm3 were compressed
in a Schenck RMC 100 machine at 750 K under an He atmosphere. The single slip [1̄23]
orientation of the specimen axis was chosen. Constant strain rate tests (γ̇a = 1.1 × 10−4 s−1)
as well as short transient tests were conducted at various strain levels, both before and after
the UYP. More details about the experimental set-up and procedure used can be found in [7].

4. Results and discussion

The comparison of calculated and experimental curves was started by examining the transient
experiments because the system of differential equations is simpler in this case.

Figure 1 presents the experimental data for a stress relaxation together with the calculated
curve for the combination of the multiplication law (3) and the exhaustion law (10).
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Figure 3. Comparison between experimental (dots) and calculated (thin curve) results for a creep
experiment performed after the LYP.

Figure 4. Evolution of the mobile dislocation density during the creep test of figure 3 according
to calculations performed using the exhaustion law (10) and the three multiplication laws.

The agreement between measured and calculated curves is excellent. An analogous comparison
is done for all nine combination of three multiplication and three exhaustion laws. The
evolution of the mobile dislocation density during this stress relaxation for the three
multiplication laws is shown in figure 2, and once again these three laws give very similar
results.

The same comparison between experimental and calculated curves is presented in figure 3
for a creep transient performed at 12% total strain. Very good agreement between the curves is
found for each multiplication and exhaustion combination used. The evolution of the density
of mobile dislocations is shown in figure 4 as calculated for the exhaustion law (10) and the
three multiplication laws. Figure 4 shows that the difference between the various laws does not
imply a very different behaviour of the dislocation population, despite the less rapid variation
of ρm when using the law (1).

Apart from the two examples of transient test calculation shown above, other comparisons
were made. In particular we successfully reproduced relaxation and creep tests with a very
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Figure 5. The whole experimental stress–strain curve (dots) of Ge at 750 K is compared with the
calculated curve (thin continuous curve) for multiplication law (1) and exhaustion law (10). The
calculated internal stress is shown (dotted curve).

Figure 6. Same as figure 5 but the calculations are performed using multiplication law (2) and
exhaustion law (10).

uncommon shape before the upper yield stress [7]. It was not possible to determine which of
the proposed equations for multiplication and exhaustion of dislocation could be disregarded,
since we could fit the experimental curves well with any combination. Nevertheless, the
proposed model reproduces very well the measured curves in spite of having only two fitted
parameters. Furthermore, many features are observed as output of the calculations which are
in full agreement with the measurements of dislocation densities and internal stresses and
with our current understanding of dislocation behaviour along the stress–strain curve. The
observations apply to the transient experiments:

• before the LYP, almost no exhaustion is observed during transients;
• after the LYP, multiplication is small compared with exhaustion;
• ρm is found to be of the order of 109 m−2 before the UYP and 1012 after the LYP;
• the internal stress is negligible before the UYP but not after the LYP.
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Figure 7. Same as figure 5, but the calculations are performed using multiplication law (3) and
exhaustion law (10).

The fact that it is not possible to classify the laws for the evolution of dislocation densities
may be related to the transient character of the above experiment. Indeed, stress and strain
variations are quite small during such tests. For this reason, the study has been complemented
by extending the comparison to the whole stress–strain curve.

Whole stress–strain curves are shown in figures 5–7,where experimental points and curves
calculated using the exhaustion law (10) and multiplication laws (1)–(3) are superimposed.
The results for each of the three exhaustion laws (8)–(10) are not shown here since they do
not have much effect on the results, i.e. the relative behaviour of the different multiplication
laws deduced using law (10) is still valid for the other two exhaustion laws. Examination
of the stress–strain curves in figures 5–7 reveals first that the yielding behaviour is correctly
reproduced by any combination of laws. Some differences appear between the multiplication
laws when observing the whole curve. Figure 6 indicates that the classic multiplication law (2)
used for metals does not allow us to correctly reproduce the part of the curve at high strain,
since the stress diverges at the end of the deformation. The comparison between figures 5 and 7
suggests that equations (1) and (3) are both able to reproduce satisfactorily the experimental
curves. However, the agreement is not perfect for either of the two laws. The strain hardening
rate seems to be too high for relation (1). When reproducing the stress–strain curve from the
UYP to the beginning with relation (3), the dislocation density decreases too fast and reaches
zero at the point where the calculated curve in figure 7 starts. In order to test further the ability
of such equations to reproduce the experimental curves, it is apparently necessary to extend
the present comparison for different straining temperatures. This necessitates, in the present
formalism, experimental measurement of the dislocation velocities in the correct stress range
for various temperatures. That work is in progress in our laboratory.

Besides testing the existing models, the present calculations also allow us to follow
the evolution of normally hidden parameters, such as the internal stress (equivalent to the
square root of the total dislocation density) and the density of mobile dislocations. For all
the combinations tested it is observed that the internal stress increases along the curve as ρt

increases. The density of mobile dislocations, shown in figure 8, increases sharply from the
beginning, passes through a maximum and then decreases. The maximum rate of increase in
ρm corresponds to the UYP while it is interesting to note that the maximum of the density
occurs at a strain level lower (by about 1%) than the LYP for the laws (1) and (3) (see figure 8).
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Figure 8. Evolution of the mobile dislocation density during the stress–strain curve of figures 5–7
according to calculations performed using the exhaustion law (10) and the three multiplication
laws. The positions of the UYP and the LYP are marked.

5. Conclusions

A calculation procedure with only two fitting parameters has been developed. This procedure
allows us to reproduce stress relaxations and creep tests as well as the whole stress–strain
curve for single-crystalline Ge at 750 K. It is shown that the multiplication law usually used
for metals (equation (2)) does not allow us to reproduce the experimental results. At the present
stage, it is not possible to discriminate between the multiplication laws proposed by Alexander
and Haasen (equation (1)) and the recent proposition by Moulin et al (equation (3)). The
calculation of stress–strain curves at different temperatures seems to be necessary to further
clarify the multiplication process in semiconductors.
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